skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ranganathan, Rajiv"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While recent advancements in motor learning have emphasized the critical role of systematic task scheduling in enhancing task learning, the heuristic design of task schedules remains predominant. Random task scheduling can lead to sub-optimal motor learning, whereas performance-based scheduling might not be adequate for complex motor skill acquisition. This paper addresses these challenges by proposing a model-based approach for online skill estimation and individualized task scheduling in de-novo (novel) motor learning tasks. We introduce a framework utilizing a personalized human motor learning model and particle filter for skill state estimation, coupled with a stochastic nonlinear model predictive control (SNMPC) strategy to optimize curriculum design for a high-dimensional motor task. Simulation results show the effectiveness of our framework in estimating the latent skill state, and the efficacy of the framework in accelerating skill learning. Furthermore, a human subject study shows that the group with the SNMPC-based curriculum design exhibited expedited skill learning and improved task performance. Our contributions offer a pathway towards expedited motor learning across various novel tasks, with implications for enhancing rehabilitation and skill acquisition processes. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. Conventional approaches to enhance movement coordination, such as providing instructions and visual feedback, are often inadequate in complex motor tasks with multiple degrees of freedom (DoFs). To effectively address coordination deficits in such complex motor systems, it becomes imperative to develop interventions grounded in a model of human motor learning; however, modeling such learning processes is challenging due to the large DoFs. In this paper, we present a computational motor learning model that leverages the concept of motor synergies to extract low-dimensional learning representations in the high-dimensional motor space and the internal model theory of motor control to capture both fast and slow motor learning processes. We establish the model’s convergence properties and validate it using data from a target capture game played by human participants. We study the influence of model parameters on several motor learning trade-offs such as speed-accuracy, exploration-exploitation, satisficing, and flexibility-performance, and show that the human motor learning system tunes these parameters to optimize learning and various output performance metrics. 
    more » « less
  4. Motor learning is a central focus of several disciplines including kinesiology, neuroscience and rehabilitation. However, given the different traditions of these fields, this interdisciplinarity can be a challenge when trying to interpret evidence and claims from motor learning experiments. To address this issue, we offer a set of ten guidelines for designing motor learning experiments starting from task selection to data analysis, primarily from the viewpoint of running lab-based experiments. The guidelines are not intended to serve as rigid rules, but instead to raise awareness about key issues in motor learning. We believe that addressing these issues can increase the robustness of work in the field and its relevance to the real-world. 
    more » « less
  5. Designing effective rehabilitation strategies for upper extremities, particularly hands and fingers, warrants the need for a computational model of human motor learning. The presence of large degrees of freedom (DoFs) available in these systems makes it difficult to balance the trade-off between learning the full dexterity and accomplishing manipulation goals. The motor learning literature argues that humans use motor synergies to reduce the dimension of control space. Using the low-dimensional space spanned by these synergies, we develop a computational model based on the internal model theory of motor control. We analyze the proposed model in terms of its convergence properties and fit it to the data collected from human experiments. We compare the performance of the fitted model to the experimental data and show that it captures human motor learning behavior well. 
    more » « less
  6. Background: Despite tremendous advances in the treatment and management of stroke, restoring motor and functional outcomes after stroke continues to be a major clinical challenge. Given the wide range of approaches used in motor rehabilitation, several commentaries have highlighted the lack of a clear scientific basis for different interventions as one critical factor that has led to suboptimal study outcomes. Objective: To understand the content of current therapeutic interventions in terms of their active ingredients. Methods: We conducted an analysis of randomized controlled trials in stroke rehabilitation over a 2-year period from 2019-2020. Results: There were three primary findings: (i) consistent with prior reports, most studies did not provide an explicit rationale for why the treatment would be expected to work, (ii) most therapeutic interventions mentioned multiple active ingredients and there was not a close correspondence between the active ingredients mentioned versus the active ingredients measured in the study, and (iii) multimodal approaches that involved more than one therapeutic approach tended to be combined in an ad-hoc fashion, indicating the lack of a targeted approach. Conclusion: These results highlight the need for strengthening cross-disciplinary connections between basic science and clinical studies, and the need for structured development and testing of therapeutic approaches to find more effective treatment interventions. 
    more » « less